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The well-known Whitham theory may be applied to shocks diffracting over concave 
corners, provided that the diffraction results in Mach reflexion. This paper compares 
the theory with data obtained during experiments with diffracting shocks. If an inci- 
dent shock is classified as weak or strong in the strict sense defined by von Neumann, 
then it is found that the Whitham theory accurately determines the Mach number of 
the Mach stem at the wall for both the weak and the strong cases. The theory also has 
some further value for strong shocks but not for weak; it is not applicable when the 
diffraction is regular. 

1. Introduction 
When a plane shock wave i diffracts over a concave corner of large angle O,, then a 

specular reflexion appears with a reflected shock r (figure 1); this was called regular 
reflexion RR by von Neumann in 1943 (see von Neumann 1963). If 0, is reduced 
sufficiently, the diffraction undergoes transieion to an irregular wave system which 
von Neumann called Mach reflexion MR. There is now both a third shock called t,he 
Mach stem s, and a contact discontinuity cd which is caused by the different entropy 
changes experienced by the gas subject to  i and r on one side of cd and s on the other 
side of it. The exact, perfect gas, theory of RR and MR has been discussed by von 
Neumann (1943), Eggink (1943), Guderley (1947), Wuest (1948)) Bleakney & Taub 
(1949)) Wecken (1949), Kawamura & Saito (1956), Henderson (1964, 1965)) Sakurai 
(1964), Molder (1971), Henderson & Siegenthaler (1980)) and many others. 

Von Neumann found it necessary to  distinguish between weak and strong incident 
shocks and gave rigorous definitions of these terms. For a diatomic gas with ratio of 
specific heats y I C,/C, = g, he found that i was weak if its inverse strength 

& Po/& > 0.433, 

and strong when ti < 0-433; here P is the pressure, and the subscripts 0, 1 refer to the 
state of the gas upstream and downstream of i respectively. These inequalities corres- 
pond to the shock Mach number Mi ranges of Mi < 1.46, for the weak case and Mi > 1.46 
for the strong. Experiments by Smith (1945), Kawamura & Saito (1956), Henderson 
& Lozzi (1975, 1979) and Henderson & Siegenthaler (1980) showed that the von 
Neumann theory was successful for RR for both weak and strong i. However there was 
an apparent persistence of RR for a range of O,, for which the von Neumann theory had 
no physically meaningful solutions; some writers have argued that this effect is 
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FIGURE 1. Diffracted wave systems on a concave wedge. (a) Regular reflexion RR. (a) Mach 
reflexion MR. i, incident shock; r, reflected shock; s, Mach stem; cs, corner signal; cd, contact 
discontinuity; Ow, wedge angle; x, trajectory path angle. 

spurious (Henderson & Lozzi 1975, 1979; Henderson & Siegenthaler 1980). Experi- 
ment has also shown the theory to be successful for strong MR but a failure for weak 
MR. Recently Henderson & Siegenthaler have shown that the failure is due to the 
theory ignoring the attenuating effect of the corner signal c5, which is always able to 
overtake every part of the shocks r and 5 in weak MR, but not always in strong MR. 

Whitham ( 1  957,1959) formulated a new approach to the general problem of a propa- 
gating shock (shock dynamics) in a perfect gas and his theory can be applied to shocks 
diffracting over corners. He considered wave-like disturbances moving along the 
downstream side of the shock i. The theory was straightforward for a convex corner 
which produced expansive disturbances, but it was more complicated for a concave 
corner because this produced compressive disturbances which ultimately 'broke ' to 
form a discontinuity. Whitham called it a 'shock-shock' ss and it can be thought of as 
a propagating disturbance which carries a discontinuity in the slope of i and in the 
local ray path. He found that a shock-shock could not properly represent a real shock 
because of a problem in over-determinism. Nevertheless the theory could represent 
other parts of a Mach reflexion such as the Mach stem s and the trajectory path angle x 
of the three-shock confluence, see figure 1. The theory predicted MR for all values of 8, 
so that it could never represent regular reflexion except in an asymptotic sense when 
the length of the Mach stem became vanishingly small with OU,+ 90". The theory 
ignores the interaction of disturbances with each other and also the effects of any 
disturbances which originate downstream and subsequently overtake i. Whitham 
concluded that his theory would be of most value for moderately strong MR. 

Whitham made a somewhat superficial comparison of his theory with the  experi- 
mental data obtained by Smith for concave corners. The data was presented by 
Bleakney & Taub for Mi = 2-42 > 1.46, and there was some systematic discrepancy. 
Bryson & Gross (1961) made a more rigorous comparison for the exacting problems of 
shocks diffracting over a cylinder (Mi = 2.82), a sphere (M( = 2.85, 4.41), and several 
cones (Mi = 3.68). They measured shock-shock loci and obta,ined good agreement with 
the theory. The comparisons which have been made so far concentrate on these loci. In 
the present paper a more detailed comparison is made using some of the Henderson & 
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FIGURE 2. Whitham model of shock diffraction. s8, shock-shock; Mi, shock Mach number of 
incident shock i; M,, shock Mach number of perturbed shock (Mach stem). 

Siegenthaler data augmented with additional data obtained by Gray. The Whitham 
theory is found to be remarkably accurate for predicting the shock Mach number 
M, of the Mach stem a t  the wall, see figure 2 ,  for both weak and strong MR. It is also of 
some further value for strong MR, but of no other value for weak MR or for RR. To 
some extent the present work complements the recent paper by Bazhenova, Gvozdeva 
& Zhilin (1979) on convex corners. 

2. The Whitham theory 
The Whitham theory of a plane shock wave diffracting over a concave corner in a 

perfect gas, provides the following expressions for the shock-shock, in present sym- 
bolism, 

(1)  
( M L  - M$ (A;  - A5)4 

A,M,+A,M, ’ tan 0, = 

The function A = f ( M )  followed from the work of Chester ( 1  954) and Chisnell(l957) on 
shocks propagating along ducts of slowly varying cross-sectional area A .  Some writers 
refer to the theory as the Chester-Chisnell-Whitham theory 
is defined by 

where 
2 1-p2 1 

h ( M ) r  l+-- ] [ 1 + 2P + j@. [ Y+l P 
and where 

:CW. The function f ( M )  

(4) 

(5) 

(6) 

Physically p is the Mach number ofthe gas normal to, relative to, and downstream of i. 
26-2 
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FIQURE 3. Nomenclature in shock confluence co-ordinates. M,, free-stream Mach number up- 
stream of i; s,,,, streamline deflexion angles across i and r ;  o,,, conventional angle of incidence; 
a,, set angle of incidence; o; measurable angle of reflexion; o,, true angle of reflexion. 

On evaluating the integral one obtained, for f ( M ) ,  

1-P +-1n MZ-L +In- f ( ~ )  = exp (- (In M 2 - 1  Y ( &I) l + p  

So far as I know this last expression has not been published before correctly in terms of 
the shock Mach number. The expression given by Bryson & Gross has several mis- 
prints. Now given (7, Ei, 0,) one may obtain Mi from Ames (1953), 

and then the shock Mach number M, of the Mach stem at the sloping wall follows from 
equations ( l ) ,  (3) and (7), and x from (2). Further, by geometry, figure 3, one has, for 
the set angle of incidence a. of i, 

a, = go-e,, (9) 

and, for the conventional angle of incidence wo, 
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which determine a, and w,. Then, taking co-ordinates at  rest at the shock confluence, 
the free-stream Mach numbers M,, 1, upstream, and downstream respectively of i 
(figure 3) are given by 

M, = Mi/sin w,, (11) 

and the streamline deflexion angle 8, across i is obtained from (Ames 1953) 

cots,= [ ' (Y+' '~ ' - - I  Mi- 1 

The shock Mach number M, of the reflected shock r can be found from the continuity 
condition on the pressure at the contact discontinuity in the neighbourhood of the 
confluence. The condition is 

t r  = Cw/t i )  (14) 

where tu,,, are the inverse strengths of the shocks s and r respectively. But there is 
another continuity condition, namely that the streamline direction should be con- 
tinuous at  the contact discontinuity cd, so that 8, = 8, + 8,) where &,, are the stream- 
line deflexions across w and r .  However the Whitham theory has already applied 
equation (3) to the shock-shock, so the streamline continuity condition cannot be 
satisfied because the disturbance is already completely determined. The streamline 
condition has to be abandoned. Now applying equation (8) in turn to all three shocks 
and substituting the result into equation (14)) one obtains, for M,, 

Finally the true wave angle wl,  and the measurable wave angle w; of r (figure 3) follow 
from 

w1 = sin-l (Mr/Mi), ( 16) 

0; = w1 -so, (17) 

and all the quantities ti, O,, w,, w;, x can be readily measured by experiment. 

3. Experiments and results 
Although Whitham indicated that his theory would be of value for moderately 

strong shocks it was decided to compare it also with weak shock data in the hope that 
it might be of some use for weak MR. 

The experiments were done in a conventional shock tube using air, y = 1.402, in the 
working section. Plane shock waves were diffracted over a concave corner formed 
from two rigid steel plates and connected by scIew-jacks so that O,, could be varied 
continuously. The inverse strength ti was held constant for a given series of experi- 
ments, while Ow was varied from near head-on incidence Ow-+ 90" to near glancing 
Ow -+ 0". There were two values for ti in the weak shock range, one was ti = 0.490 which 
was close to the strong shock boundary at gi = 0-433, and the other was well removed 



806 L. F .  Henderson 

ti Mi 
0.905 & 0.005 
0.490 +- 0.010 
0.300 +- 0.019, 
0.150 +- 0.004, 

1.044 k 0.002, 
1.375 +- 0.013 
1.732 +_ 0-051 
2.420 f 0.035 

TABLE 1. Inverse shock strengths Ei and tolerances used in experiments, and their 
corresponding shock Mach numbers M". 
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FIUURE 4. Comparison of the Whitham theory with experimental data for the wall Mach number 
M, of the Mach stem. 0, ti = 0.15; 0, ti = 0.49; A, ti = 0.905; the filled-in symbols are for 
regular reflexion; the open symbols are for the Mach reflexion. -, Whitham theory; 0, 
glancing incidence point 8, = 0 from the exact theory; (, observed transition point between 
regular and Mach reflexion. 

a,, (degrees) 

from it at ti = 0.905. There were also two values in the strong shock range, one, 
ti = 0.300, near the boundary and the other, & = 0.150, well removed from it. Tol- 
erances were placed on the variations of ti from its nominal values, and data outside 
these tolerances were rejected, see table 1.  The experimental technique has been 
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FIGURE 5. Comparison of the Whitham theory with experimental data for the trajectory path 
angle x. For an explanation of the symbols see caption to figure 4. 

described in detail by Henderson & Siegenthaler (1980). The data obtained for M, 
and x are presented in figures 4 and 5 ,  and that for the measurable wave angle w; in 
figures 6-9. 

4. Discussion 
Figure 4 shows that for the Mw data the Whitham theory is in excellent agreement 

with experiment for both the weak and the strong data. There are signs of some dis- 
crepancy near glancing incidence 8, -+ 0, wo -+ om, M,+ Mi. The exact theory of this 
point has been given by Henderson & Siegenthaler, and i t  is plotted for each ti in 
figure 4 with the symbol 0.  The Whitham theory does not pass through this point for 
any ti, but the experimental data tends towards these points in each case. However, 
the discrepancy is small, so the theory is accurate even for weak shocks where the 
corner signal cs overtakes the Mach stem s. This is a useful result because it means that 
the Whitham theory for M, can be combined with the Henderson & Siegenthaler theory 
to provide a solution for weak Mach reflexion. For regular reflexion the experiments 
indicate that the Whitham theory behaves like M ,  -+ (Milsin wo) ,  that is M ,  approaches 
the free-stream Mach number M,, of the incident shock i along the sloping surface. But 
Mo is already known from the given values of (7, t i ,u0)  and equations (8)-( l l )  with 
x = 0. So the theory tells us nothing new about RR for either weak or strong shocks. 

Figure 5 shows that the theory does not agree very well with the data for x; i t  is best 
for & = 0.15 but even so there are discrepancies. As we have seen the Whitham theory 
is in some error near glancing incidence 8, + 0, where now x + xm, and the exact values 
of xm are shown in figure 5 .  So this accounts for the discrepancy in this region. On the 
other hand we have seen that the theory always predicts MR even for the RR range of 
8,. Now for RR, x = 0, agd the Whitham theory only has this condition at  head-on 
incidence 8 , +  go", which explains why there is a discrepancy as the diffraction becomes 
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FIGURE 6. Comparison of the Whitham theory with experimental data for the measurable angle 
of reflexion w;, for ti = 0.905 k 0.005. web, observed angle of transition between RR and MR; 
w, the value of w o  for glancing incidence; for other symbols see caption to figure 4. 
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FIGURE 7. Comparison of the Whitham theory with experimental data for the measurable angle 
of reflexion w i ,  for ti = 0.490 ? 0.010. For symbols see captions to figures 4 and 6. 



On the Whitham theory of shock wave diffraction 

70 I- 
8 

0 

0 

8 

0 
60 - 

0 
0 

50 - 
m 
h 

p? 
!&? 40 - 
a, 
3 

30 - 

809 

a m  

10 I I  I I t  
30 40 50 60 

wo (degrees) 

FIGURE 8. Comparison of the Whitham theory with experimental data for the measurable angle 
of reflexion = 0.300. For symbols see captions to figures 4 and 6. for & = 0.300 +_ 0,019,; 0,  

regular. Bryson & Gross’ (1961) results for a cylinder with Mi = 2.8 a t  first sight sug- 
gest that  the agreement should have been better. However their data is sparse near 
RR and plotted on such a small scale that it cannot be compared adequately with the 
present results. Furthermore their shock-shock loci have not been plotted in terms of 
wo and x, but in terms of Cartesian co-ordinates. The Bryson & Gross results would be 
consistent with the present results if their values of wo and x are in the region where the 
theory crosses the data, as shown in figure 5. The ti = 0.300 data has been omitted 
from figures 4 and 5 in the interest of clarity. 

For weak shocks the ti = 0.9 and 0.49 data for w; in figures 6 and 7 show that the 
shock-shock equations cannot represent the reflected shock r properly. This is to be 
expected in view of the facts that the corner signal overtakes r and over-determinism 
does not allow the equation to meet all the constraints on r .  The theory improves as the 
strong shock boundary is approached ti = 0.49 z 0.433, figure 7, but it is still inade- 
quate. The improvement continues as the strong boundary is crossed, ti = 0.300, 
figure 8, and here a t  best the theory would be marginally useful. However for Ei = 0.150 
(figure 9) the theory is in excellent agreement with the data for MR except again near 
glancing incidence. The theory is not applicable to  regular reflexion. 

5. Conclusions 

1. The Whitham theory of shock diffraction accurately determines the shock Mach 
number of the Mach stem along the sloping wall of a concave corner for both weak and 
strong Mach reflexion. There is some small error near glancing incidence. 
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FIGURE 9. Comparison of the Whitham theory with experimental data for the measurable angle 
of reflexion 0; for & = 0.150 0.035. For symbols see captions to  figures 4 and 6. 

2. For strong Mach reflexion the theory can represent the reflected shock ade- 
quately except near glancing incidence and near the stronglweak shock boundary, 
which is a t  ti = 0.433 for air. The theory is good for ti = 0.150 but poor for ti = 0.3. 

3. The theory is not very accurate for determining the trajectory path angle x ofthe 
shock confluence in Mach reflexion. 

4. The theory is of no value for regular reflexion. 

The author wishes to acknowledge the work of Mr A. Siegenthaler and Mr P. Gray in 
performing the experiments. This work is supported by the Australian Research 
Grants Committee. 
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